Mineral Monitorization in Different Tissues of Solanum tuberosum L. during Calcium Biofortification Process

Author:

Coelho Ana Rita F.ORCID,Lidon Fernando Cebola,Pessoa Cláudia CamposORCID,Daccak DianaORCID,Luís Inês CarmoORCID,Marques Ana CoelhoORCID,Ramalho José CochichoORCID,Semedo José Manuel N.ORCID,Silva Maria ManuelaORCID,Pais Isabel P.,Brito Maria GraçaORCID,Kullberg José CarlosORCID,Legoinha PauloORCID,Simões MariaORCID,Scotti-Campos PaulaORCID,Pessoa Maria FernandaORCID,Reboredo Fernando HenriqueORCID

Abstract

Calcium is one of the 16 essential elements for plants, being required as Ca2+ and being involved in several fundamental processes (namely, in the stability and integrity of the cell wall, the development of plant tissue, cell division, and in stress responses). Moreover, Ca plays an important role in potato production. In this context, this study aimed to monitor the culture development (in situ and using an unmanned aerial vehicle (UAV)) and the mineral content of four essential elements (Ca, P, K, and S) in different organs of Solanum tuberosum L. (roots, stems, leaves, and tubers) during a calcium biofortification process, carried out with two types of solutions (CaCl2 and Ca-EDTA) with two concentrations (12 and 24 kg∙ha−1). The calcium content generally increased in the S. tuberosum L. organs of both varieties and showed, after the last foliar application, an increase in Ca content that varied between 5.7–95.6% and 20.7–33%, for the Picasso and Agria varieties, respectively. The patterns of accumulation in both varieties during the biofortification process were different between the variety and mineral element. Regarding the quality analysis carried out during the development of the tubers, only the Agria variety was suitable for industrial processing after the last foliar application.

Funder

PDR2020

GeoBioTec

CEF

LIBPhys

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drones in vegetable crops: A systematic literature review;Smart Agricultural Technology;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3