Overexpression of the SiLEA5 Gene in Saussurea involucrata Increases the Low-Temperature Tolerance of Transgenic Tomatoes

Author:

Liu XiaoyanORCID,Xia Wenwen,Zhang Xiaoli,Li AoweiORCID,Qin Jiawang,Sun Huili,Li Jin,Zhu Jianbo

Abstract

The late embryonic development abundant protein (LEA) is a family of proteins widely present in the body and related to osmoregulation. Saussurea involucrata is an extremely cold-tolerant plant. In our previous studies, we found that the LEAs gene in Saussurea involucrata has up-regulated expression under low temperature. To evaluate the biological function of SiLEA5 protein under low-temperature stress and its potential in agricultural breeding, we isolated the SiLEA5 gene from Saussurea involucrata, constructed a plant overexpression vector, and transformed tomato. We found that SiLEA5 protein significantly increased the yield of transgenic tomatoes by increasing their photosynthetic capacity, including net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration. Under low-temperature stress, the SiLEA5 protein can regulate proline metabolism and oxidative stress, which confers transgenic tomatos with cold resistance. Thus, our work provided evidence for the role of SiLEA5 protein in low-temperature stress resistance in plants, as well as potential applications in crop breeding and cold stress resistance research.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3