Transcriptome Analysis of Watercore in Pineapple

Author:

Yao YanliORCID,Li Mingwei,Lin Wenqiu,Liu Shenghui,Wu Qingsong,Fu Qiong,Zhu Zhuying,Gao Yuyao,Zhang Xiumei

Abstract

Watercore is a physiological disorder in pineapples, which is expressed as fluid deposition in intercellular spaces and presents as water soaked. This disorder affects the fruit quality and decreases storage life, resulting in enormous commercial losses to growers and restricting the development of the pineapple industry in China. However, the molecular mechanism of watercore remains unclear. In order to elucidate the molecular mechanism of pineapple watercore, the transcriptome analyses of watercored and normal fruits were carried out in pineapples for the first time using de novo RNA-seq technology. High-quality reads of 46.66 and 43.71 M were obtained in the transcriptomes of normal and mildly watercored fruits, respectively. Clean reads of 45.50 and 42.79 M were obtained after filtering the original data. These genes are useful resources in subsequent pineapple watercore research. Fifty genes in phenylpropanoid biosynthesis, glucose metabolism, calcium transport, and cell wall metabolism were considerably different between normal and watercored fruits. Among them, the expressions of the AcPME, AcBGLU43, Ac4CL5, AcPER1, and AcPOD genes were upregulated by 7–21 times in watercored fruit, while the expressions of AcSUS7 were downregulated by 16.61 times, and the expressions of other differential genes were upregulated or downregulated by more than 2 times. A total of 38 differentially expressed transcription factors were obtained by screening. Among these transcription factors, WRKY was the most abundant, followed by MYB. The acquisition of these genes is important for the first understanding of the molecular mechanism of this physiological disorder.

Funder

Hainan Provincial Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3