Enhanced Production of Apocarotenoids by Salicylic Acid Elicitation in Cell Suspension Cultures of Saffron (Crocus sativus L.)

Author:

Moradi Azar,Zarinkamar Fatemeh,Mita GiovanniORCID,Caretto SofiaORCID,De Paolis AngeloORCID

Abstract

A cell suspension culture of saffron (Crocus sativus L.) was previously established from style-derived calli to obtain an in vitro system for crocin, an uncommon and valuable water-soluble apocarotenoid, and carotenoid production suitable for future scaling up. To shed more light on the correlation between apocarotenoid biosynthesis and key-gene expression, in this study, SA was used at 0.5 mM concentration to elicit crocin production and the effects on carotenoid production were analyzed after 6, 12, 24, and 48 h. HPLC-DAD analysis was used for total crocin quantification as well as the other carotenoids zeaxanthin, β-carotene and lutein. Quantitative RT-PCR was used to analyze the transcript levels of saffron apocarotenoid biosynthetic key genes PSY (phytoene synthase), BCH1 (β-carotene hydroxylase), and CCD2 (carotenoid cleavage dioxygenase) after SA elicitation. In saffron suspension-cultured cells elicited by SA, the carotenoid biosynthetic pathway was mostly enhanced toward crocin biosynthesis, known to exert strong biological activity and therapeutic effects, rather than lutein or xanthins. SA increased BCH1 and CCD2 gene expression 15.6 and 3.3 times, respectively, compared to the control at 24 h after elicitation. Although a dynamic change of metabolite contents and gene expression was observed during the 48 h time course in response to SA elicitation, the changes of zeaxanthin and crocin were consistent with the regulation of the corresponding genes BCH and CCD2 during the time course. In conclusion, the effects of SA on regulation of gene expression in the apocarotenoid pathway could be successfully applied for the biotechnological production of crocin.

Funder

Tarbiat Modares University

Institute of Sciences of Food Production

CNR project

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3