Three-Dimensional Imaging in Agriculture: Challenges and Advancements in the Phenotyping of Japanese Quinces in Latvia

Author:

Kaufmane Edīte1ORCID,Edelmers Edgars23ORCID,Sudars Kaspars3ORCID,Namatēvs Ivars3ORCID,Nikulins Arturs3ORCID,Strautiņa Sarmīte1ORCID,Kalniņa Ieva1ORCID,Peter Astile4

Affiliation:

1. Institute of Horticulture, Graudu Iela 1, Ceriņi, Krimunu p., Dobeles reg., LV-3701 Dobele, Latvia

2. Medical Education Technology Centre, Rīga Stradiņš University, Anniņmuižas Bulvāris 26A, LV-1067 Riga, Latvia

3. Institute of Electronics and Computer Science, Dzērbenes Iela 14, LV-1006 Riga, Latvia

4. Division of Electronics and Embedded Systems, KTH Royal Institute of Technology, Brinellvägen 8, SE-11428 Stockholm, Sweden

Abstract

This study presents an innovative approach to fruit measurement using 3D imaging, focusing on Japanese quince (Chaenomeles japonica) cultivated in Latvia. The research consisted of two phases: manual measurements of fruit parameters (length and width) using a calliper and 3D imaging using an algorithm based on k-nearest neighbors (k-NN), the ingeniously designed “Imaginary Square” method, and object projection analysis. Our results revealed discrepancies between manual measurements and 3D imaging data, highlighting challenges in the precision and accuracy of 3D imaging techniques. The study identified two primary constraints: variability in fruit positioning on the scanning platform and difficulties in distinguishing individual fruits in close proximity. These limitations underscore the need for improved algorithmic capabilities to handle diverse spatial orientations and proximities. Our findings emphasize the importance of refining 3D scanning techniques for better reliability and accuracy in agricultural applications. Enhancements in image processing, depth perception algorithms, and machine learning models are crucial for effective implementation in diverse agricultural scenarios. This research not only contributes to the scientific understanding of 3D imaging in horticulture but also underscores its potential and limitations in advancing sustainable and productive farming practices.

Funder

Latvian Council of Science

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference40 articles.

1. Charasteristics and Composition of Chaenomeles Fruit Juice;Vila;Japanese Quince Potential Fruit Crop for Northen Europe,2003

2. Investigations of the Biochemical Composition of Chaenomeles japonica Fruits;Krasnova;Cheminė Technol.,2007

3. Cold-Pressed Japanese Quince (Chaenomeles japonica (Thunb.) Lindl. Ex Spach) Seed Oil as a Rich Source of α-Tocopherol, Carotenoids and Phenolics: A Comparison of the Composition and Antioxidant Activity with Nine Other Plant Oils;Siger;Eur. J. Lipid Sci. Technol.,2014

4. Zvikas, V., Urbanaviciute, I., Bernotiene, R., Kulakauskiene, D., Morkunaite, U., Balion, Z., Majiene, D., Liaudanskas, M., Viskelis, P., and Jekabsone, A. (2020). Investigation of Phenolic Composition and Anticancer Properties of Ethanolic Extracts of Japanese Quince Leaves. Foods, 10.

5. Ruisa, S. (1996). Studies on Japanese Quince (Chaenomeles japonica) in Latvia, Department of Horticulture Plant Breeding, SLU Balsgard.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3