Novel S. pennellii × S. lycopersicum Hybrid Rootstocks for Tomato Production with Reduced Water and Nutrient Supply

Author:

Ellenberger JanORCID,Bulut Aylin,Blömeke Philip,Röhlen-Schmittgen Simone

Abstract

Drought stress and nutrient deficiency are limiting factors in vegetable production that will have a decisive role due to the challenges of climate change in the future. The negative effects of these stressors on yield can be mitigated by crop grafting. The increasing demands for resource-use efficiency in crop production, therefore, require the development and phenotyping of more resilient rootstocks, and the selection of appropriate scions. We tested the effect of combined drought stress and nutrient deficiency on yield and fruit quality of the two tomato cultivars ‘Lyterno’ and ‘Tastery’ in the greenhouse, grafted onto different rootstock genotypes. The use of four different rootstocks, including two novel S. pennellii × S. lycopersicum hybrids and the proven-effective use of ‘Beaufort’, as well as self-grafted plants, allowed conclusions to be drawn about the differential stress mitigation of the rootstocks used. The stress-induced yield reduction of the scion ‘Lyterno’ can be mitigated more significantly by the novel hybrid rootstocks than by the commercial rootstock ‘Beaufort’. At the same time, however, the individual fruit weight and the lycopene content of the fruits were significantly reduced when grafted onto the hybrid rootstocks. In contrast, the cultivar ‘Tastery’ showed a weak stress response, so that a generally positive influence of the rootstocks independently of the scions could not be demonstrated. We conclude that, particularly for more sensitive cultivars, the selection of more resilient rootstocks offers the potential for sustainable and resource-efficient production not competing with the overall quality of tomatoes.

Funder

European Commission

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3