Effect of Dopamine on Growth, Some Biochemical Attributes, and the Yield of Crisphead Lettuce under Nitrogen Deficiency

Author:

Farouk Saad1ORCID,El-Hady Mahmoud A. M. Abd2ORCID,El-Sherpiny Mohamed A.3,Hassan Mohamed M.4ORCID,Alamer Khalid H.5ORCID,Al-Robai Sami Asir6,Ali Esmat F.4ORCID,El-Bauome Hemat A.7

Affiliation:

1. Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt

2. Horticulture Department, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt

3. Water and Environment Research Institute, Agriculture Research Centre, El-Gama St., Giza 12619, Egypt

4. Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

5. Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia

6. Department of Biology, Faculty of Science, Al-Baha University, Al-Baha P.O. Box 1988, Saudi Arabia

7. Vegetable and Floriculture Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt

Abstract

Nitrogen (N) represents the most important nutrient for plant growth and productivity, but extreme and ineffective usage of N fertilizer results in boosted plant production expenditures and environmental contamination. For the world’s sustainable food production and environmental profits, there has been increased research interest in reducing the use of N fertilization along with improving plant N deficiency (ND) tolerance. Dopamine (DA), a potential antioxidant, mediates several physio-biochemical processes in plants under normal or stressful conditions. However, their roles in increasing ND tolerance in crisphead lettuce are not well-documented. We investigate the role of DA concentration (0.50 and 100 µM) on the growth and yield of crisphead lettuce plants under ND. Under normal conditions (100% recommended N fertilizer dose), DA (50 and 100 μM) application significantly enhanced growth, chlorophyll concentration, N%, antioxidant enzymes activity, as well as yield and its components, decreased nitrate accumulation and oxidative biomarkers compared to untreated plants (0 μM DA). ND significantly decreased plant growth and yield attributes as well as evoked oxidative impairment and nitrate accumulation as compared to 100% recommended N fertilizer dose in the absence of DA. However, within ND conditions, the application of DA concentrations significantly mitigated ND-induced oxidative burst and improved plant growth, chlorophyll concentration, N%, nitrate concentration, peroxidase, catalase, superoxide dismutase, total soluble solid, vitamin C, dry matter %, and total sugars, over 0 μM DA treated plants. Current findings highlighted that exogenous application of 100 μM DA could reinforce the crisphead lettuce plant’s resilience to ND by minimizing reactive oxygen species accumulation and promoting enzymatic antioxidants alongside growth, yield, and quality improvement. The beneficial effects of DA in lessening ND’s drastic impacts on crisphead lettuce resulted from upregulating antioxidant enzyme activity, impairment of oxidative biomarkers, and maintaining chlorophyll levels. The current findings open pioneering prospects to reduce nitrogen fertilization by DA application without any drastic effect on plant productivity. But further research is needed to fully understand DA effects and their mechanisms in inducing ND tolerance in different plant species, including crisphead lettuce.

Funder

Taif University

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3