Quantifying Tree Hydration Using Electromagnetic Sensors

Author:

Stott Lance,Black Brent,Bugbee Bruce

Abstract

An automated method of determining tree water status would enable tree fruit growers, foresters and arborists to reduce water consumption, reduce orchard maintenance costs and improve fruit quality. Automated measurements could also be used to irrigate based on need rather than on fixed schedules. Numerous automated approaches have been studied; all are difficult to implement. Electromagnetic sensors that measure volumetric water content can be inserted in tree trunks to determine relative changes in tree water status. We performed automated measurements of dielectric permittivity using four commercially available electromagnetic sensors in fruit tree trunks over the 2016 growing season. These sensors accurately measure the ratio of air and water in soils, but tree trunks have minimal air-filled porosity. The sensors do respond, however, to bound and unbound water and the relative change in the output of the sensors thus provides an indication of this ratio. Sapwood is the hydro-dynamically responsive component of trunk anatomy and is nearest the bark. Sensor response improved when the waveguides were exposed to a greater percentage of sapwood. Irrigation-induced increases of approximately 0.5 MPa in stem water potential were associated with 0.5 unit increases in dielectric permittivity. Electromagnetic sensors respond to bound water in trees and thus have the potential to indicate tree water status, especially when the sensor rods are in contact with sapwood. Sensor modifications and/or innovative installation techniques could enable automated measurements of tree water status that could be used to precision irrigate trees.

Funder

Utah Department of Agriculture and Food

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3