Author:
Ru Chen,Hu Xiaotao,Wang Wene,Ran Hui,Song Tianyuan,Guo Yinyin
Abstract
Precise irrigation management of grapevines in greenhouses requires a reliable method to easily quantify and monitor the grapevine water status to enable effective manipulation of the water stress of the plants. This study describes a study on stem diameter variations of grapevine planted in a greenhouse in the semi-arid area of Northwest China. In order to determine the applicability of signal intensity of stem diameter variation to evaluate the water status of grapevine and soil. The results showed that the relative variation curve of the grapevine stem diameter from the vegetative stage to the fruit expansion stage showed an overall increasing trend. The correlations of MDS (maximum daily shrinkage) and DI (daily increase) with meteorological factors were significant (p < 0.05), and the correlations with SWP, RWC and soil moisture were weak. Although MDS and DI can diagnose grapevine water status in time, SIMDS and SIDI have the advantages of sensitivity and signal intensity compared with other indicators. Compared with MDS and DI, the R2 values of the regression equations of SIMDS and SIDI with SWP and RWC were high, and the correlation reached a very significant level (p < 0.01). Thus, SIMDS and SIDI are more suitable for the diagnosis of grapevine water status. The SIMDS peaked at the fruit expansion stage, reaching 0.957–1.384. The signal-to-noise ratio of SIDI was higher than that of MDS across the three treatments at the vegetative stage. The value and signal-to-noise ratio of SIDI at the flowering stage were similar to those of SIMDS, while the correlation between SIDI and the soil moisture content was higher than that of SIMDS. It can be concluded that that SIDI is suitable as an indicator of water status of grapevine and soil during the vegetative and flowering stages. In addition, the signal-to-noise ratio of SIMDS during the fruit expansion and mature stages was significantly higher than that of SIDI. Therefore, SIMDS is suitable as an indicator of the moisture status of grapevine and soil during the fruit expansion and mature stages. In general, SIMDS and SIDI were very good predictors of the plant water status during the growth stage and their continuous recording offers the promising possibility of their use in automatic irrigation scheduling in grapevine.
Funder
National Key Research and Development Program of China
the National Natural Science Foundation of China
Shaanxi Key Science and Technology Innovation Team Project
Subject
Horticulture,Plant Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献