Signal Intensity of Stem Diameter Variation for the Diagnosis of Drip Irrigation Water Deficit in Grapevine

Author:

Ru Chen,Hu Xiaotao,Wang Wene,Ran Hui,Song Tianyuan,Guo Yinyin

Abstract

Precise irrigation management of grapevines in greenhouses requires a reliable method to easily quantify and monitor the grapevine water status to enable effective manipulation of the water stress of the plants. This study describes a study on stem diameter variations of grapevine planted in a greenhouse in the semi-arid area of Northwest China. In order to determine the applicability of signal intensity of stem diameter variation to evaluate the water status of grapevine and soil. The results showed that the relative variation curve of the grapevine stem diameter from the vegetative stage to the fruit expansion stage showed an overall increasing trend. The correlations of MDS (maximum daily shrinkage) and DI (daily increase) with meteorological factors were significant (p < 0.05), and the correlations with SWP, RWC and soil moisture were weak. Although MDS and DI can diagnose grapevine water status in time, SIMDS and SIDI have the advantages of sensitivity and signal intensity compared with other indicators. Compared with MDS and DI, the R2 values of the regression equations of SIMDS and SIDI with SWP and RWC were high, and the correlation reached a very significant level (p < 0.01). Thus, SIMDS and SIDI are more suitable for the diagnosis of grapevine water status. The SIMDS peaked at the fruit expansion stage, reaching 0.957–1.384. The signal-to-noise ratio of SIDI was higher than that of MDS across the three treatments at the vegetative stage. The value and signal-to-noise ratio of SIDI at the flowering stage were similar to those of SIMDS, while the correlation between SIDI and the soil moisture content was higher than that of SIMDS. It can be concluded that that SIDI is suitable as an indicator of water status of grapevine and soil during the vegetative and flowering stages. In addition, the signal-to-noise ratio of SIMDS during the fruit expansion and mature stages was significantly higher than that of SIDI. Therefore, SIMDS is suitable as an indicator of the moisture status of grapevine and soil during the fruit expansion and mature stages. In general, SIMDS and SIDI were very good predictors of the plant water status during the growth stage and their continuous recording offers the promising possibility of their use in automatic irrigation scheduling in grapevine.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China

Shaanxi Key Science and Technology Innovation Team Project

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3