A sensorless, Big Data based approach for phenology and meteorological drought forecasting in vineyards

Author:

Canavera Ginevra,Magnanini Eugenio,Lanzillotta Simone,Malchiodi Claudio,Cunial Leonardo,Poni Stefano

Abstract

AbstractA web-based app was developed and tested to provide predictions of phenological stages of budburst, flowering and veraison, as well as warnings for meteorological drought. Such predictions are especially urgent under a climate change scenario where earlier phenology and water scarcity are increasingly frequent. By utilizing a calibration data set provided by 25 vineyards observed in the Emilia Romagna Region for two years (2021–2022), the above stages were predicted as per the binary event classification paradigm and selection of the best fitting algorithm based on the comparison between several metrics. The seasonal vineyard water balance was calculated by subtracting daily bare or grassed soil evapotranspiration (ETs) and canopy transpiration (Tc) from the initial water soil reservoir. The daily canopy water use was estimated through a multiple, non-linear (quadratic) regression model employing three independent variables defined as total direct light, vapor pressure deficit and total canopy light interception, whereas ETS was entered as direct readings taken with a closed-type chamber system. Regardless of the phenological stage, the eXtreme Gradient Boosting (XGBoost) model minimized the prediction error, which was determined as the root mean square error (RMSE) and found to be 5.6, 2.3 and 8.3 days for budburst, flowering and veraison, respectively. The accuracy of the drought warnings, which were categorized as mild (yellow code) or severe (red code), was assessed by comparing them to in situ readings of leaf gas exchange and water status, which were found to be correct in 9 out of a total of 14 case studies. Regardless of the geolocation of a vineyard and starting from basic in situ or online weather data and elementary vineyard and soil characteristics, the tool can provide phenology forecasts and early warnings of meteorological drought with no need for fixed, bulky and expensive sensors to measure soil or plant water status.

Funder

Regione Emilia-Romagna

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3