Effects of D-Limonene Nanoemulsion Coating on Post-Harvest Quality and Physiology of Papaya

Author:

Yu Meng-Chieh1,Hou Chih-Yao2ORCID,Hsieh Chang-Wei3ORCID,Tsay Jyh-Shyan4,Chung Hsin-Ying1,Liang Yu-Shen1

Affiliation:

1. Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung 912, Taiwan

2. Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan

3. Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan

4. Department of Horticulture and Landscape Architecture, National Taitung Junior College, Taitung 950, Taiwan

Abstract

Papaya (Carica papaya L.) is a climacteric fruit, and its quality will rapidly decrease after ripening. Hence, the storage life of its fruit is short. D-limonene is a terpene compound in citrus essential oil and has antibacterial and antioxidant properties. The addition of D-limonene in edible coating can delay volatilization, prevent microorganism and pathogen invasion, decrease water loss, inhibit softening, decrease gas exchange, and extend the storage life of fruits. In this study, 0.25%, 0.5%, and 1% D-limonene nanoemulsion coatings were used for post-harvest immersion treatment of “Tainung No. 2” papayas and its effects on appearance, chlorophyll content, respiration rate, ethylene production, pectin methylesterase, polygalacturonase activity, decay loss, firmness, total soluble solid, titratable acidity, ascorbic acid, and total plate count were investigated. After the papayas were treated with 0.5% D-limonene nanoemulsion coating, polygalacturonase and pectin methylesterase activities decreased, fruit firmness was maintained, and ascorbic acid content was high. On the last day of storage, polygalacturonase and pectin methylesterase activities were 0.01 and 0.02 U/kg FW lower than the control group, respectively; firmness was higher than the control group by 1.75 N, and ascorbic acid content was higher than the control group by 31.97 mg/100 g FW. On Day 2, the treatment showed delay in total soluble solid accumulation and chlorophyll degradation, consequently delaying the color change in fruits. The coating decreased decay loss by 40% on Day 2, decreased respiration rate by 97.0 mg CO2 kg−1 h−1, and ethylene production by 5.7 µL kg−1 h−1 on Day 2. Simultaneously, the coating decreased the total plate count and resulted in a good appearance. Fruits coated with a 1% D-limonene nanoemulsion coating showed defects in color change. In summary, 0.5% D-limonene nanoemulsion coating delayed “Tainung No. 2” papaya ripening and decreased microbial infection, consequently extending its storage life.

Funder

Ministry of Agriculture

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3