Physiological and Molecular Responses of Apocynum venetum L. (Apocynaceae) on Salt Stress

Author:

Li Lulu1,Wang Jingyang1,Qian Cheng1ORCID,Zhang Cuiping1,Wang Haixia2,Li Wei1ORCID,Zhao Han3,Ju Yiqian1

Affiliation:

1. College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266000, China

2. College of Grassland Science, Qingdao Agricultural University, Qingdao 266000, China

3. Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450000, China

Abstract

Soil salinization is a crucial factor that impacts plant distribution and growth. Apocynum venetum, an ornamental plant with medicinal value, has shown remarkable salt tolerance. However, the specific mechanisms through which A. venetum responds to salt stress are not yet fully understood. To address this gap, we conducted a study where 10-week-old A. venetum seedlings were subjected to salt stress by irrigating them with a nutrient solution containing varying concentrations of NaCl (0, 100, 200, and 350 mmol·L−1). After the salt stress treatment, various growth indicators (such as plant height, root length, root fresh weight, root dry weight, leaf fresh weight, leaf dry weight, root water content, leaf water content, and root–leaf ratio) as well as physiological indicators (including SOD and CAT activities in both leaves and roots, soluble protein contents in leaves and roots, and chlorophyll and carotene contents in leaves) were determined. In addition, the gene expression profile of roots under salt stress was examined by transcriptome sequencing to explore the mechanism of salt response in A. venetum. Our results show that salt stress led to yellowing and wilting of A. venetum seedling leaves. Furthermore, the chlorophyll and carotenoid contents in the leaves of the 350 mmol·L−1 NaCl-treated group were significantly reduced. Although the leaf and root biomass gradually decreased with an increase in the salt concentration, the root–leaf ratio exhibited a decreasing trend. NaCl stress also caused significant changes in physiological indices in the A. venntum leaves and roots. The activities of superoxide dismutase (SOD) and catalase (CAT) increased in both leaves and roots of the 100 mmol·L−1 NaCl-treated group. The soluble protein content in both leaves and roots increased under the 200 mmol·L−1 NaCl stress. To screen changes in root gene expression, transcriptome sequencing and qRT-PCR were performed. GO and KEGG enrichment analyses revealed that salt stress primarily affects carbohydrate metabolism, MAPK signaling transduction, phytohormone signaling pathways, glyoxylate and dicarboxylate metabolism, and other pathways. This study provides a novel understanding of the growth and physiological response of A. venetum leaf and root to NaCl stress, as well as the changes in the transcription levels in A. venetum root. The results serve as a reference for future research on salt-tolerant mechanisms and molecular breeding of A. venetum.

Funder

Qingdao Agricultural University Doctoral Start-Up Fund

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference72 articles.

1. Plant salt-tolerance mechanisms;Deinlein;Trends Plant Sci.,2014

2. Salt and drought stress signal transduction in plants;Zhu;Annu. Rev. Plant Biol.,2002

3. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses;Katuwal;J. Plant Physiol.,2020

4. Spatially resolved metabolomics and lipidomics reveal salinity and drought-tolerant mechanisms of cottonseeds;Liu;J. Agric. Food Chem.,2021

5. Salt sensitivity in chickpea is determined by sodium toxicity;Khan;Planta,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3