Novel Insights into Phytoplasma Effectors

Author:

Carreón-Anguiano Karla Gisel1ORCID,Vila-Luna Sara Elena1,Sáenz-Carbonell Luis1,Canto-Canché Blondy1ORCID

Affiliation:

1. Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico

Abstract

Effectoromics has become integral to the identification of pathogen targets and/or host-resistant proteins for the genetic improvement of plants in agriculture and horticulture. Phytoplasmas are the causal agents of more than 100 plant diseases in economically important crops such as vegetables, spices, medicinal plants, ornamentals, palms, fruit trees, etc. To date, around 20 effectors in phytoplasmas have been experimentally validated but the list of putative effectors comprises hundreds of different proteins. Very few families (tribes) have been identified based on homology, such as the SAP05-like, SAP11-like, SAP54-like and TENGU-like families. The lack of conservation in amino acid sequences slows the progress of effectoromics in phytoplasmas since many effectors must be studied individually. Here, 717 phytoplasma effector candidates and 21 validated effectors were characterized in silico to identify common features. We identified functional domains in 153 effectors, while 585 had no known domains. The most frequently identified domain was the sequence-variable mosaic domain (SVM domain), widely distributed in 87 phytoplasma effectors. Searching for de novo amino acid motifs, 50 were found in the phytoplasma effector dataset; 696 amino acid sequences of effectors had at least 1 motif while 42 had no motif at all. These data allowed us to organize effectors into 15 tribes, uncovering, for the first time, evolutionary relationships largely masked by lack of sequence conservation among effectors. We also identified 42 eukaryotic linear motifs (ELMs) in phytoplasma effector sequences. Since the motifs are related to common functions, this novel organization of phytoplasma effectors may help further advance effectoromics research to combat phytoplasma infection in agriculture and horticulture.

Funder

Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), México

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3