Gene expression profiling of Cacopsylla pyricola (Hemiptera: Psyllidae) infected with Ca. Phytoplasma pyri (Acholeplasmatales: Acholeplasmataceae) reveals candidate effectors and mechanisms of infection

Author:

Easterling Katherine A1ORCID,Marshall Adrian T1ORCID,Pitino Marco1ORCID,Walker William B1ORCID,Cooper W Rodney1ORCID

Affiliation:

1. Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS , Wapato, WA , USA

Abstract

Abstract Phytoplasmas can negatively or positively alter vector host fitness. “Candidatus Phytoplasma pyri,” is the causal agent of pear decline in commercial pear (Pyrus communis L.; Rosales: Rosaceae) and peach yellow leafroll in peach [Prunus persica (L.); Rosaceae]. This plant pathogen is transmitted by several species of pear psyllids (Cacopsylla spp. Hemiptera: Psyllidae). We sought to explore the relationship between the pear decline phytoplasma and its US vector, Cacopsylla pyricola (Förster), at the molecular genetic level through transcriptomic analysis using RNA-sequencing methodology. We also focused on phytoplasma and insect effectors, which are secreted proteins that can modulate interactions within a pathosystem. In this study, we identified 30 differentially expressed genes, 14 candidate insect effector genes, and 8 Ca. Phytoplasma pyri candidate effectors. Two strains of Ca. Phytoplasma pyri were identified based on immunodominant membrane protein sequence analysis from C. pyricola collected in the Pacific Northwest agricultural region. Here, we present a first genetic look at the pear decline pathosystem and report gene candidates for further exploration of infection mechanisms and potential tools for integrated pest management.

Funder

USDA Agricultural Research Service

Washington State Department of Agriculture—Specialty Crop Block

Publisher

Oxford University Press (OUP)

Reference86 articles.

1. Basic local alignment search tool;Altschul;J. Mol. Biol.,2007

2. Application of multiple omics and network projection analyses to drug repositioning for pathogenic mosquito-borne viruses;Amemiya;Sci. Rep,2021

3. The leucine-rich repeat structure;Bella;Cell. Mol. Life Sci,2008

4. Phytoplasma and phytoplasma diseases: a review of recent research;Bertaccini;Phytopathol. Mediterr,2009

5. Dissecting the multifaceted mechanisms that drive leafhopper host–phytoplasma specificity;Bertaccini;Vector-Mediated Transmission of Plant Pathogens,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3