Affiliation:
1. Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
2. Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
Abstract
This study investigated how salicylic acid (SA) mediates the response of melon (Cucumis melo) seeds to salt stress using physiological and transcriptomic methods. The effects of SA on the antioxidant enzymes, osmoregulatory substances, and transcriptome of melon seeds under salt stress were investigated using sodium chloride (NaCl, 100 mmol·L−1) as the stress stimulant and SA + NaCl (0.25 mmol·L−1 + 100 mmol·L−1) as the alleviation treatment. The results showed that SA positively influences salt tolerance by increasing the activity of superoxide dismutase activity (SOD) and catalase activity (CAT) while decreasing proline content (Pro). Differentially expressed genes (DEGs) were identified by transcriptome data analysis, of which 2958 were up-regulated, and 2157 were down-regulated. These genes were mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway and plant hormone signal transduction, lipid metabolism (linoleic and α-linolenic fatty acid metabolism), biosynthesis of secondary metabolites (phenylpropanoid pathway and flavonoid biosynthesis), and related pathways. Further analysis revealed that SA might alleviate salt stress by initiating a series of signaling pathways under salt stress, participating in lignin biosynthesis to improve cell wall stability, and positively regulating lipoxygenase (LOX) genes. These results provide valuable information and new strategies for future salt resistance cultivation and high melon yield.
Funder
Opening Project of Xinjiang Key Laboratory of Crop Biotechnology
Subject
Horticulture,Plant Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献