Calcium signaling during salt stress and in the regulation of ion homeostasis

Author:

Manishankar Prabha1,Wang Nili12,Köster Philipp1,Alatar Abdulrahman A3,Kudla Jörg13ORCID

Affiliation:

1. Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany

2. National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China

3. Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia

Abstract

Abstract Soil composition largely defines the living conditions of plants and represents one of their most relevant, dynamic, and complex environmental cues. The effective concentrations of many either tolerated or essential ions and compounds in the soil usually differ from the optimum that would be most suitable for plants. In this regard, salinity—caused by excess NaCl—represents a widespread adverse growth condition, but shortage of ions such as K+, NO3−, and Fe2+ also restrains plant growth. During the past years, many components and mechanisms that function in the sensing and establishment of ion homeostasis have been identified and characterized. Here, we reflect on recent insights that extended our understanding of components and mechanisms which govern and fine-tune plant salt stress tolerance and ion homeostasis. We put special emphasis on mechanisms that allow for interconnection of the salt overly sensitive pathway with plant development and discuss newly emerging functions of Ca2+ signaling in salinity tolerance. Moreover, we review and discuss accumulating evidence for a central and unifying role for Ca2+ signaling and Ca2+-dependent protein phosphorylation in regulating sensing, uptake, transport, and storage processes of various ions. Finally, based on this cross-field inventory, we deduce emerging concepts and questions arising for future research.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3