Low Nocturnal Temperature Alters Tomato Foliar and Root Phosphorus Fractions Allocation by Reducing Soil Phosphorus Availability

Author:

Shi Qingwen123,Ma Ru123,Sun Zhouping123,Liu Yufeng123,Fu Hongdan123,Li Tianlai123

Affiliation:

1. College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China

2. Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China

3. National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China

Abstract

Low nocturnal temperature (LNT) is a major constraint for protected tomato production in China during winter and spring, which leads to tomato phosphorus (P) deficiency symptoms. The soil P fractions reflect soil P availability. The foliar and root P fractions reflect the adaptation strategies of tomatoes to LNT. However, the relationship between plant P fractions and soil P fractions under LNT is not well understood. Therefore, we conducted a 40-day indoor incubation experiment with four nocturnal temperatures (15, 12, 9 and 6 °C). Tomato growth status, plant P fractions and soil P fractions were determined. Then, structural equation model (SEM) was used to analyze the direct and/or indirect effects of LNT on soil P fractions, plant P fractions and tomato shoot dry weight (SDW). The results showed that LNT decreased soil P availability by decreasing soil labile P and increasing soil moderately labile P. The foliar inorganic P, metabolite P, nucleic acid P and residual P were decreased under 9 and 6 °C. The root nucleic acid P and lipid P were decreased, while metabolite P was increased under 9 and 6 °C. Tomato foliar and root P fraction allocation was directly influenced by the increase in soil moderately labile P, while the decline in SDW was directly influenced by the decrease in soil labile P. In conclusion, LNT affects tomato P fractions allocation by reducing soil P availability, which limits the shoot dry matter production in tomatoes.

Funder

Project of Education Department of Liaoning Province

Shenyang Science and Technology Project

China Agriculture Research System

Innovation and Entrepreneurship Training Program for Undergraduates in Liaoning Province

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3