Affiliation:
1. National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
2. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
Abstract
SWEET (Sugars Will Eventually be Exported Transporter) genes play essential roles in various biological processes, including phloem loading, sugar efflux, plant development and stress response. In this study, a total of 33 RsSWEET gene members were identified in the radish genome. They could be divided into four subfamilies and are distributed on eight radish chromosomes. Cis-acting regulatory element analysis indicated that these RsSWEET genes were potentially involved in the radish growth and development and stress response process, including circadian control and light response and responses to numerous stresses, including low-temperature and drought stress. Transcriptome data analysis revealed that a number of RsSWEET genes exhibited specific expression patterns in different tissues and developmental stages of radish. Moreover, several RsSWEET genes (e.g., RsSWEET2a, RsSWEET3a, RsSWEET16b and RsSWEET17) showed differential expression profiles under various abiotic stresses, including cold, heat, salt, Cd and Pb stress. Remarkably, the RsSWEET17 was specifically expressed in the cambium of radish. RsSWEET17 was heterologously expressed in yeast strain EBY.VW4000, which suggested that it has the ability to transport sugar. Notably, RsSWEET17-overexpressing Arabidopsis plants exhibited excessive root length, greater fresh weight and higher soluble sugar content (SSC) accumulation compared with wild-type (WT) plants, indicating that RsSWEET17 might positively regulate radish taproot development by strategically manipulating sugar accumulation. Collectively, these results clarify the molecular mechanisms underlying RsSWEET-mediated sugar accumulation and root growth and development in radish.
Funder
Jiangsu Seed Industry Revitalization Project
National Natural Science Foundation of China
Jiangsu Agricultural S&T Innovation Fund
the earmarked fund for Jiangsu Agricultural Industry Technology System
the Guidance Foundation of the Hainan Institute of Nanjing Agricultural University
Subject
Horticulture,Plant Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献