Genome-Wide Bioinformatics Analysis of SWEET Gene Family and Expression Verification of Candidate PaSWEET Genes in Potentilla anserina

Author:

Iqbal Javed12,Zhang Wuhua12,Fan Yingdong12,Dong Jie12,Xie Yangyang12,Li Ronghui12,Yang Tao12,Zhang Jinzhu12,Che Daidi12

Affiliation:

1. College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China

2. Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China

Abstract

Sugars act as the main energy sources in many fruit and vegetable crops. The biosynthesis and transportation of sugars are crucial and especially contribute to growth and development. SWEET is an important gene family that plays a vital role in plants’ growth, development, and adaptation to various types of stresses (biotic and abiotic). Although SWEET genes have been identified in numerous plant species, there is no information on SWEETs in Potentilla anserina. In the present study, we performed a comprehensive genome-wide bioinformatics analysis and identified a total of 23 candidate PaSWEETs genes in the Potentilla anserina genome, which were randomly distributed on ten different chromosomes. The phylogenetic analysis, chromosomal location, gene structure, specific cis-elements, protein interaction network, and physiological characteristics of these genes were systematically examined. The identified results of the phylogenetic relationship with Arabidopsis thaliana revealed that these PaSWEET genes were divided into four clades (I, II, III, and IV). Moreover, tissue-specific gene expression through quantitative real-time polymerase chain reaction (qRT-PCR) validation exposed that the identified PaSWEETs were differentially expressed in various tissues (roots, stems, leaves, and flowers). Mainly, the relative fold gene expression in swollen and unswollen tubers effectively revealed that PaSWEETs (7, 9, and 12) were highly expressed (300-, 120-, and 100-fold) in swollen tubers. To further elucidate the function of PaSWEETs (7, 9, and 12), their subcellular location was confirmed by inserting them into tobacco leaves, and it was noted that these genes were present on the cell membrane. On the basis of the overall results, it is suggested that PaSWEETs (7, 9, and 12) are the candidate genes involved in swollen tuber formation in P. anserina. In crux, we speculated that our study provides a valuable theoretical base for further in-depth function analysis of the PaSWEET gene family and their role in tuber development and further enhancing the molecular breeding of Potentilla anserina.

Funder

National Natural Science Foundation of China

Joint Guiding Project of the Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3