Comparative Analysis of Transcriptomes to Identify Genes during Bud Dormancy of Pyrus pyrifolia ‘Huanghua’

Author:

Wang Huiquan1,Liu Chunying1,Ye Qinghua1,Shen Yunyu1,Wu Shaohua2,Lin Lizhong1

Affiliation:

1. College of Horticulture and Forest, Fujian Vocational College of Agriculture, Fuzhou 350303, China

2. College of Horticulture, Fujian Agriculture and Forest University, Fuzhou 350000, China

Abstract

The study of pear dormancy mechanisms is currently a major research area in pear production and has high economic significance for agricultural production. We selected the southern sand pear cultivar Pyrus pyrifolia ‘Huanghua’ as the test material to study the pear dormancy process through microscopic observation of pear flower buds. The endodormancy period is abbreviated as D_bud. Similarly, the endodormancy release initiation period and the ecodormancy period are referred to as DB_bud and G_bud, respectively. Meanwhile, RNA sequencing was used to obtain the gene expression profile of Pyrus pyrifolia ‘Huanghua’ flower buds. The RNA sequencing results indicated that there were 224 differentially expressed genes (DEGs) in endodormancy (D) vs. endodormancy release initiation period (DB), while 975 were identified between endodormancy and ecodormancy (G). Finally, a total of 868 DEGs were found in the DB vs. G comparison. The expression levels of the genes Pbr009498.1 (LAX1-1), Pbr012348.1 (LAX1-2), Pbr021158.1 (GH35), and Pbr031621.1 (LAX2) encoding IAA were significantly higher during the DB_bud than during the D_bud. The expression level of Pbr025864.2 (IAA13) during the D_bud was significantly higher than the DB_bud and G_bud. The Pbr041942.1 (GID1B) gene also showed a significant increase during ecodormancy. Taken together, these results suggest that these genes, annotated as LAX1, GH35, LAX2, IAA13, and GID1C, are involved in endodormancy maintenance and in the transition from endodormancy to ecodormancy in Pyrus pyrifolia ‘Huanghua’.

Funder

Fujian Province science and technology plan guiding project

Special research fund for doctoral program of higher education institutions

Fujian Province science and technology plan key project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3