Growing Salicornia europaea L. with Saline Hydroponic or Aquaculture Wastewater

Author:

Puccinelli Martina1ORCID,Marchioni Ilaria2ORCID,Botrini Luca1,Carmassi Giulia1ORCID,Pardossi Alberto13ORCID,Pistelli Laura13ORCID

Affiliation:

1. Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy

2. Department of Food and Drug, University of Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy

3. Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy

Abstract

Among halophyte plants, Salicornia species (also known as glasswort or sea asparagus) are increasingly grown in open fields and greenhouses for edible or non-edible purposes. Their salinity tolerance makes it possible to irrigate Salicornia plants with saline waters and even seawater, which cannot be used by other crop species. In this work, S. europaea (L.) was cultivated in pots under the typical climatic conditions of the fall season in the Mediterranean region and irrigated with non-saline standard nutrient solution (SNS) or saline wastewater discharged from a greenhouse semi-closed hydroponic (substrate) culture of tomato or a saltwater recirculating aquaculture system (RAS) with Gilthead sea bream (Spaurus aurata L., which was used as such or after dilution (50:50) with SNS. Plant growth was not significantly affected by the composition of irrigation water, while higher antioxidant capacity (measured using the DPPH assay) and concentration of photosynthetic pigments, phenols, flavonoids, and ascorbic acid were found in the shoots of SNS plants than in those of plants irrigated with wastewater. The level of lipid peroxidation and H2O2 production significantly increased in the SNS plants, which also showed higher activity of superoxide dismutase and lower activity of catalase. These results suggest that S. europaea can be cultivated using wastewater with moderate to high salinity discharged from greenhouse hydroponic crops or RASs, and that salt is not strictly required for the growth of this species. Using non-saline nutrient solution can result in moderate oxidative stress that improves the shoot quality of S. europaea.

Funder

University of Pisa

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3