Systematic Characterization of Cow Manure Biochar and Its Effect on Salicornia herbacea L. Growth

Author:

Shin Hyokyeong1,Chun Danbi1,Cho Ick-Rae2,Hanif Md. Abu1ORCID,Kang Sung-Soo13,Kwac Lee Ku13,Kim Hong Gun13,Kim Young Soon1ORCID

Affiliation:

1. Institute of Carbon Technology, Jeonju University, Jeonju 55069, Republic of Korea

2. Department of AgroAI, Jeonju University, Jeonju 55069, Republic of Korea

3. Graduate School of Carbon Convergence Engineering, Jeonju University, Jeonju 55069, Republic of Korea

Abstract

This study investigated the potential of biochar as a sustainable material for waste utilization and carbon sequestration in soil. Biochar was prepared from cow manure (CM) and applied to the soil. Biochar was processed by subjecting CM to various temperature ranges (400 [CMB400], 550 [CMB550], and 700 °C [CMB700]) under nitrogen gas (allowed to flow to restrict oxygen), with residence time set to 3 h. The characteristics of the biochar produced at each temperature were analyzed. The experiment was conducted for approximately 15 weeks with the laboratory temperature maintained between 24 and 26 °C. The growth rate of plants was obtained by measuring their length weekly, starting 4 weeks after crop establishment. CMB550 exhibited the highest specific surface area (117.57 m2 g−1) and well-distributed pore size; therefore, it was mixed with the soil at a specific ratio and put in pots for the planting of Salicornia herbacea L. (glasswort) in the laboratory. The results demonstrated that adding biochar to soil increased plant growth and that the biochar could store organic carbon. In addition, an investigation of heavy metals demonstrated that samples with biochar had lower heavy metal concentrations in glasswort than those without because of the potential of biochar to adsorb heavy metals. By interacting with heavy metal ions in soil solution, the reactive sites and functional groups on the surface of biochar immobilize them and lessen their potentially detrimental effects on plant growth. Overall, biochar has the potential to be a valuable resource for waste management and environmental improvement.

Funder

National Research Foundation of Korea

Korea Institute for Advancement of Technology

Carbon Convergence Innovation Human Resources Project Group Advanced Graduate Education Project for Carbon Composites

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3