Identification of the Oleosin Genes and Functional Analysis of CeOle4 Gene in Cyperus esculentus L.

Author:

Dong Yuanyuan1ORCID,Cui Yuling1,Wang Yijin1,Luan Shiyu1,Liu Xinyi1,Yang Qi1,Liu Weican1,Li Xiaowei1,Wang Nan1,Wang Fawei1,Gu Lei2,Xue Ping3

Affiliation:

1. College of Life Sciences, Jilin Agricultural University, Changchun 130118, China

2. Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany

3. Department of Agriculture and Forestry Technology, Weinan Vocational and Technical College, Weinan 714000, China

Abstract

Tiger nut is the tuber of the perennial herbaceous plant Cyperus esculentus L., whose unique underground tubers are not only the main reproductive organ but also an important oil storage site. Oleosin is the most abundant structural protein in the oil body, which is an important membrane structural protein, playing a role in the formation and stability of lipid droplets in oilseed crops. Most studies have focused on the oleosin in oilseeds, but rarely on the oil containing tuber. In this study, nine oleosin genes from the Cyperus esculentus transcriptome were identified and divided into two groups via phylogenetic analysis. The expression patterns of the nine oleosins were examined through quantitative real-time PCR (qRT-PCR) in various development stages of stem tissue (35 d, 50 d, 75 d, 90 d, and 120 d after sowing). The subcellular localization of CeOle4 indicated that this protein was localized exclusively to membrane, indicating that it functioned in the plasma membrane. The highly expressed gene CeOle4 within the CeOleosin gene family was further transformed into yeast cells and plant materials. The results demonstrate that CeOle4 can promote lipid synthesis, enhancing the stability of oil lipids at low temperature and changing seed phenotypic traits. This discovery addresses and enriches the research on the function of CeOleosin genes and lays the groundwork for future studies on novel and superior transgenic crops related to tiger nut.

Funder

Science and Technology Development Project of Jilin province

Jilin Provincial College Students’ Innovative Training Project, Shaanxi Vocational and Technical Education Association’s 2024 Vocational Education Teaching Reform Research Project

Shaanxi Provincial Administration for Market Regulation Science and Technology Plan Project

Key R & D projects in Shaanxi Province

Weinan City Science and Technology Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3