Water Deficit Severity during the Preceding Year Determines Plant Tolerance to Subsequent Year Drought Stress Challenges: A Case Study in Damask Rose

Author:

Aalam Fatemeh1,Rezaei Nejad Abdolhossein1,Mousavi-Fard Sadegh2ORCID,Raji Mohammadreza1,Nikoloudakis Nikolaos3ORCID,Goumenaki Eleni4ORCID,Fanourakis Dimitrios4ORCID

Affiliation:

1. Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad P.O. Box 465, Iran

2. Department of Horticultural Science, Faculty of Agriculture, Shahrekord University, Shahrekord P.O. Box 115, Iran

3. Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol CY-3603, Cyprus

4. Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Greece

Abstract

Damask rose is an important essential oil crop. In the present study, plants were subjected to three different water deficit levels (70, 40, and 10% available water content) for two periods (June–October). Plant phenology, growth, essential oil yield, gas exchange features, membrane stability and major antioxidant defense elements were monitored across two years. Soil water deficit was related to quicker completion of the growth cycle (up to 7.4 d), and smaller plants (up to 49.7%). Under these conditions, biomass accumulation was jointly constrained by decreased leaf area, chlorophyll content, CO2 intake, and photosynthetic efficiency (up to 82.8, 56.9, 27.3 and 68.2%, respectively). The decrease in CO2 intake was driven by a reduction in stomatal conductance (up to 41.2%), while the decrease in leaf area was mediated by reductions in both number of leaves, and individual leaf area (up to 54.3, and 64.0%, respectively). Although the reactive oxygen species scavenging system was activated (i.e., proline accumulation, and enhanced activity of three antioxidant enzymes) by water deficit, oxidative stress symptoms were still apparent. These effects were amplified, as soil water deficit became more intense. Notably, the adverse effects of water deficit were generally less pronounced when plants had been exposed to water severity during the preceding year. Therefore, exposure to water deficit elicited plant tolerance to future exposure. This phenotypic response was further dependent on the water deficit level. At more intense soil water deficit across the preceding year, plants were less vulnerable to water deficit during the subsequent one. Therefore, our results reveal a direct link between water deficit severity and plant tolerance to future water stress challenges, providing for the first time evidence for stress memory in damask rose.

Funder

Lorestan University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3