Aloe vera Cuticle: A Promising Organic Water-Retaining Agent for Agricultural Use

Author:

Luligo-Montealegre Wilmer E.1,Prado-Alzate Santiago1,Ayala-Aponte Alfredo2ORCID,Tirado Diego F.3ORCID,Serna-Cock Liliana1ORCID

Affiliation:

1. Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Valle del Cauca, Colombia

2. Escuela de Ingeniería de Alimentos, Universidad del Valle, Cali 760031, Valle del Cauca, Colombia

3. Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Cesar, Colombia

Abstract

Water is an important resource for both human and environmental survival. However, due to current human practices, we are facing a serious crisis in accessing water. Thus, solutions must be explored to optimize the use of this resource. In the search for an organic water-retaining agent for agricultural use, the techno-functional properties of Aloe vera (Aloe barbadensis Miller) cuticle, an agro-industrial residue generated after gel extraction, were evaluated. The residue was dried and ground. The effects of particle size (180 µm and 250 µm), temperature (10 °C, 20 °C, 30 °C, and 40 °C), and pH (4.5, 6.0, and 7.0) on the solubility and water-holding capacity (WHC) of the obtained product (i.e., hydrogel) were then evaluated. The treatment with the highest WHC was selected and compared with the WHC of a commercial synthetic polyacrylamide gel widely used in agriculture. The effects of KNO3 and Ca(NO3)2 at different concentrations (10 g L−1, 20 g L−1, 30 g L−1, and 40 g L−1) on the WHC of the gels were assessed. Particle size, temperature, and pH interactions had statistically significant effects on solubility, while the WHC was affected by particle size × temperature and pH × temperature interactions. The highest product solubility (75%) was obtained at the smallest particle size (i.e., 180 µm), pH 4.5, and 20 °C. Meanwhile, the highest WHC (18 g g−1) was obtained at the largest particle size (i.e., 250 µm), pH 6.0, and 20 °C. This optimized gel kept its WHC across both salts and their concentrations. In contrast, the commercial gel significantly decreased its WHC with salt concentration. The product elaborated with A. vera cuticle could have bioeconomic potential as a water-retention agent for agricultural use, with the advantage that it is not affected by the addition of salts used for plant fertilization.

Funder

Universidad Nacional de Colombia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3