Combined Effect of Salinity and LED Lights on the Yield and Quality of Purslane (Portulaca oleracea L.) Microgreens

Author:

Giménez AlmudenaORCID,Martínez-Ballesta María del CarmenORCID,Egea-Gilabert CatalinaORCID,Gómez Perla A.ORCID,Artés-Hernández FranciscoORCID,Pennisi GiuseppinaORCID,Orsini FrancescoORCID,Crepaldi Andrea,Fernández Juan A.ORCID

Abstract

The present work aims to explore the potential to improve quality of purslane microgreens by combining water salinity and LED lighting during their cultivation. Purslane plants were grown in a growth chamber with light insulated compartments, under different lighting sources on a 16 h d−1 photoperiod—fluorescent lamps (FL) and two LED treatments, including a red and blue (RB)) spectrum and a red, blue and far red (RB+IR) LED lights spectrum—while providing all of them a light intensity of 150 µmol m−2 s−1. Plants were exposed to two salinity treatments, by adding 0 or 80 mM NaCl. Biomass, cation and anions, total phenolics (TPC) and flavonoids content (TFC), total antioxidant capacity (TAC), total chlorophylls (Chl) and carotenoids content (Car) and fatty acids were determined. The results showed that yield was increased by 21% both in RB and RB+FR lights compared to FL and in salinity compared to non-salinity conditions. The nitrate content was reduced by 81% and 91% when microgreens were grown under RB and RB+FR, respectively, as compared to FL light, and by 9.5% under saline conditions as compared with non-salinity conditions. The lowest oxalate contents were obtained with the combinations of RB or RB+FR lighting and salinity. The content of Cl and Na in the leaves were also reduced when microgreens were grown under RB and RB+FR lights under saline conditions. Microgreens grown under RB light reached the highest TPC, while salinity reduced TFC, Chl and Car. Finally, the fatty acid content was not affected by light or salinity, but these factors slightly influenced their composition. It is concluded that the use of RB and RB+FR lights in saline conditions is of potential use in purslane microgreens production, since it improves the yield and quality of the product, reducing the content of anti-nutritional compounds.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3