Detecting Maturity in Fresh Lycium barbarum L. Fruit Using Color Information

Author:

Zhao JianORCID,Chen Jun

Abstract

The accurate quantitative maturity detection of fresh Lycium barbarum L. (L. barbarum) fruit is the key to determine whether fruit are suitable for harvesting or not and can also be helpful to improve the quality of post-harvest processing. To achieve this goal, abnormal samples were eliminated by the Mahalanobis Distance (MD), and nine components (i.e., R, G, B, H, S, V, L, a, and b) of the ripe fruit, half-ripe fruit, and unripe fruit were extracted, firstly. Then, significant component combinations of the three fruits beneficial to the extraction of their areas were determined. Through binary processing, morphology processing, and other image processing methods, a quantitative maturity detection model of fruit was established based on the support vector machine (SVM) model. On this basis, field experiments were conducted to verify and compare the relationship between the prediction results of the model and the picking forces of fruit. Field experiments showed that the accuracies of both the training set and prediction set were 100% and the prediction results of the model were consistent with the picking forces of fruit. Findings provided a theoretical basis for the accurate quantitative maturity detection of fresh L. barbarum fruit.

Funder

National Key Research and Development Program of China

China Scholarship Council

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3