Integrative Effects of CO2 Concentration, Illumination Intensity and Air Speed on the Growth, Gas Exchange and Light Use Efficiency of Lettuce Plants Grown under Artificial Lighting

Author:

Ahmed Hesham A.,Tong Yuxin,Li Lie,Sahari Suliaman Q.,Almogahed Abdulkarem M.,Cheng Ruifeng

Abstract

This study investigates and quantifies the integrative effects of CO2 concentration (500, 1000 and 1500 µmol mol−1), illumination intensity (100, 200 and 300 μmol m−2 s−1) and air speed (0.25, 0.50 and 0.75 m s−1) on the growth, gas exchange and light use efficiency of lettuce plants (Lactuca sativa L.) grown under artificial lighting. The results show that lettuce growth and gas exchange are closely related to CO2 concentration and illumination intensity, while air speed enhances CO2 transport during photosynthesis. The most influential two-way interactions were observed between CO2 concentration and illumination intensity on the fresh and dry weights of lettuce shoots with effect sizes of 34% and 32%, respectively, and on the photosynthesis, transpiration and light use efficiency, with effect sizes of 52%, 47% and 41%, respectively. The most significant three-way interaction was observed for the photosynthetic rate, with an effect size of 51%. In general, the fresh and dry weights of lettuce plants increased by 36.2% and 20.1%, respectively, with an increase in CO2 concentration from 500 to 1500 µmol mol−1 and by 48.9% and 58.6%, respectively, with an increase in illumination intensity from 100 to 300 μmol m−2 s−1. The photosynthetic rate was found to be positively correlated with CO2 concentration, illumination intensity and air speed. The transpiration rate and stomatal conductance increased by 34.9% and 42.1%, respectively, when the illumination intensity increased from 100 to 300 μmol m−2 s−1. However, as CO2 concentration increased from 500 to 1500 μmol mol−1 and air speed increased from 0.25 to 0.75 m s−1, the transpiration rate decreased by 17.5% and 12.8%, respectively. With the quantified data obtained, we were able to adequately determine how CO2 concentration, illumination intensity and air speed interact with their combined effects on the growth of lettuce plants grown in indoor cultivation systems with artificial lighting.

Funder

Science and Technology Partnership Program, Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3