Higher Light Intensity Combined with Early Topping Improves the Yield and Quality of Pea Shoots in LED Plant Factory

Author:

Liang Juwen1,Ji Fang1,He Dongxian1

Affiliation:

1. Key Laboratory of Agricultural Engineering in Structure and Environment of MARA, College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China

Abstract

Pea shoots is a popular vegetable in certain regions of the world due to their unique taste and abundance of health-promoting phytochemicals. The perishable nature and susceptibility to root rot of pea shoots necessitate a new soilless production system located close to the market. This study compared the growth of pea shoots using various cultivation methods in an LED plant factory. The results showed that early topping (4 days after transplanting, ET) promoted early harvest compared to later topping (20 days after transplanting, LT) and increased the number of harvested shoots by extending the harvest time to 2.8 times, ultimately resulting in a substantial yield improvement. Moreover, the yield of ET with a lower planting density (72 plants m−2, ET-LD) was 8.7% higher than ET with a higher planting density (126 plants m−2, ET-HD). Particularly, the average shoot fresh weight (AFW) under ET-LD exceeded that of ET-HD by 48.9%. It is advisable to consider adopting ET-LD for the cultivation of pea shoots in LED plant factories. Based on ET-LD, the yield, nutritional quality, and light use efficiency of pea shoots were further explored at different stages under three levels of light intensity (50, 100, and 150 μmol m−2·s−1). Contrasted against a light intensity of 50 μmol m−2·s−1, AFW, number of harvested shoots, and total fresh yield under a light intensity of 150 μmol m−2·s−1, increased by 60.2%, 62.8%, and 165.1%, respectively. Meanwhile, AFW, photosynthetic capacity, soluble sugar and vitamin C levels in leaves, as well as light use efficiency and photon yield, initially increased and then decreased with the extension of the planting period. Among these, soluble sugar, light use efficiency, and photon yield started to decrease after reaching the maximum value at 60–70 days after transplanting. In conclusion, a light intensity of 150 μmol m−2·s−1 with a photoperiod of 16 h d−1 using LEDs, combined with early topping within a planting period of 60–70 days, proves to be suitable for the hydroponic production of pea shoots in LED plant factories.

Funder

Key Research and Development Project of Shandong Province

China Agriculture Research System

Publisher

MDPI AG

Reference40 articles.

1. Miles, C.A., and Sonde, M. (2003). Pea Shoots, Washington State University Cooperative Extension. Available online: https://www.researchgate.net/publication/242372648_Pea_Shoots.

2. Edible medicinal and non-medicinal plants: Volume 1;Lim;Fruits,2013

3. Response of growth, yield, and quality of edible-podded snow peas to supplemental LED lighting during winter greenhouse production;Kong;Can. J. Plant Sci.,2019

4. Analysis of main nutrients, bioactive compounds and antioxidant capacities in pea tip;Ma;Food Mach.,2016

5. Assessment of nutritional and metabolic profiles of pea shoots: The new ready-to-eat baby-leaf vegetable;Santos;Food Res. Int.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3