Effect of a Radical Mutation in Plastidic Starch Phosphorylase PHO1a on Potato Growth and Cold Stress Response

Author:

Nezhdanova Anna V.,Efremov Gleb I.,Slugina Maria A.,Kamionskaya Anastasia M.,Kochieva Elena Z.,Shchennikova Anna V.ORCID

Abstract

The plant response to stresses includes changes in starch metabolism regulated by a complex catalytic network, in which plastidic starch phosphorylase PHO1a is one of the key players. In this study, we used the CRISPR-Cas9 system to edit the PHO1a gene in four potato (Solanum tuberosum L.) cultivars, which resulted in the introduction of a radical mutation, G261V, into the PHO1a functional domain. The mutants had altered morphology and differed from wild-type plants in starch content in the roots and leaves. Exposure to cold stress revealed the differential response of parental and transgenic plants in terms of starch content and the expression of genes coding for β-amylases, amylase inhibitors, and stress-responsive MADS-domain transcription factors. These results suggest that the G261V mutation causes changes in the functional activity of PHO1a, which in turn affect the coordinated operation of starch catabolism enzymes both under normal and cold stress conditions, possibly through differential expression of MADS-domain transcription factors. Our results highlight a critical regulatory role of PHO1a in starch metabolism, root and shoot development, and stress response in potatoes.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3