Evaluation of the Effects of Culture Media and Light Sources on In Vitro Growth of Brassavola nodosa (L.) Lindl. Hybrid

Author:

Vendrame Wagner A.ORCID,Xu JianJian,Beleski David

Abstract

Culture medium and light are important factors that affect the process of in vitro propagation of plants. Particularly for orchids, diverse culture media have been evaluated for micropropagation of many species and hybrids. More recently, light-emitting diodes (LEDs) have become widely used in agriculture, including micropropagation commercial operations, resulting in increased production and reduced costs compared to traditional fluorescent lights. Brassavola nodosa (L.) Lindl. is an orchid, with great potential for commercialization as a potted flowering plant due to the beauty and fragrance of its inflorescences. In this study, we evaluated the effects of culture media (VW, MS, and ½ MS) and light sources (three LED sources and one fluorescent light source) on the micropropagation of B. nodosa orchids. VW medium resulted in the best growth and development of in vitro shoots compared to MS and ½ MS media. Light sources with lower intensity, such as LED-3 (80 μmol m−2 s−1 PPFD) resulted in the best plant performance in vitro, while LED-2 (1015 μmol m−2 s−1 PPFD) showed the best plant performance ex vitro. Rooting was obtained in vitro without the need for a rooting phase. Survival ex vitro was 100%, with the successful growth and development of in vitro-derived plantlets during acclimatization.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference40 articles.

1. Orchids

2. Fundamentals of Orchid Biology;Arditti,1992

3. Nomenclatural revision of the genus Brassavola R. Br. of the Orchidaceae;Jones;Ann. Nat. Mus. Wien.,1975

4. Long-term conservation of protocorms of Brassavola nodosa (L) Lind. (Orchidaceae): Effect of ABA and a range of cryoconservation techniques;Mata-Rosas;Cryoletters,2015

5. Multiplication, rooting in vitro, and acclimatization of Brassavola tuberculata Hook. (Orchidaceae), an orchid endemic to the brazilian atlantic rainforest

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3