Trichoderma spp. and Mulching Films Differentially Boost Qualitative and Quantitative Aspects of Greenhouse Lettuce under Diverse N Conditions

Author:

Di Mola Ida,Ottaiano Lucia,Cozzolino EugenioORCID,Senatore Mauro,Sacco AdrianaORCID,El-Nakhel ChristopheORCID,Rouphael YoussefORCID,Mori Mauro

Abstract

The global increasing demand of lettuce is pushing farmers to boost their production through several technical means, including mulching and nitrogen fertilization. However, from an environmental protection perspective, the role of scientific research is to limit the excessive use of some chemical approaches. This research aims to evaluate the possible effects of two mulching films (black polyethylene, PE, and brown photoselective film, BF) and two treatments with a plant growth-promoting product, containing Trichoderma spp., (non-treated, - Control and treated with RYZO PEP UP, - TR), on the productive and qualitative traits of lettuce grown under four regimes of nitrogen (0, 30, 60 and 90 kg ha−1, N0, N30, N60, and N90, respectively). The marketable yield increased at higher nitrogen levels, but without differences between the N60 and N90 doses. The photoselective film elicited marketable yield, with an 8% increase over PE. N fertilization also improved photochemical efficiency (higher Soil Plant Analysis Development and chlorophyllous pigments biosynthesis), as well as antioxidant activities (lipophilic—LAA and hydrophilic—HAA) and bioactive compounds (phenols and total ascorbic acid—TAA). Interestingly, Trichoderma spp. had a positive effect on these qualitative parameters, especially when combined with mulching films, where the increase generated by PE-TR treatment over the all other treatments was 16.3% and 16.8% for LAA and HHA, respectively. In all treatments, the nitrate leaves content was consistently always within the legal limit imposed by the European community. Overall, although Trichoderma spp. did not engender a marked effect on yield, probably due to the short crop cycle, its positive effect on some quality traits is an interesting starting point for further research.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference40 articles.

1. The Future of Food and Agriculture–Alternative Pathways to 2050,2018

2. The effect of novel biodegradable films on agronomic performance of zucchini squash grown under open-field and greenhouse conditions;Di Mola;Aust. J. Crop. Sci.,2019

3. Polyethylene and biodegradable mulches for agricultural applications: a review

4. Biodegradation of Agricultural Plastic Films: A Critical Review

5. Improvement of Soil Solarization through a Hybrid System Simulating a Solar Hot Water Panel

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3