Salinity-Induced Physiological Responses of Three Putative Salt Tolerant Citrus Rootstocks

Author:

Mahmoud Lamiaa,Dutt ManjulORCID,Vincent ChristopherORCID,Grosser Jude

Abstract

Our study aimed to evaluate the physiological responses following salinity treatment of three putatively salt-tolerant Citrus rootstocks recently developed by the University of Florida’s Citrus breeding program. Four-month-old seedlings from each of the three rootstocks (HS1, HS17, and HC15) were irrigated with 0, 60, 80, and 100 mm NaCl solution. The seedlings were evaluated together with the salt-tolerant Cleopatra mandarin as a positive control, Volkamer lemon as a moderately salt-tolerant rootstock, and the salt-sensitive Carrizo rootstock as a negative control. Our results demonstrated that chlorophyll content, net CO2 assimilation rate (A), transpiration rate (E), and stomatal conductance (gsw) significantly decreased in response to salinity. Na+ and Cl− levels were higher in leaf tissues than in the roots. Relatively little damage to the cellular membrane was recorded in HC15 and Cleopatra rootstocks under the 100 mm NaCl treatment, along with high accumulation of total phenolic content (TPC), while HS17 had the highest proline levels. Our results indicate that HC15 and HS17 rootstocks exhibited salt tolerance capacity via different strategies under salt stress and could be suitable replacements to the commercially available, salt-tolerant Cleopatra rootstock.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3