Abstract
High-performance control of inertial stabilization imaging sensors (ISISs) is always challenging because of the complex nonlinearities induced by friction, mass imbalance, and external disturbances. To overcome this problem, a terminal sliding mode controller (TSMC) based on a novel exponential reaching law (NERL) method with a high-order terminal sliding mode observer (HOTSMO) is suggested. First, the TSMC based on NERL is adopted to improve system performance. The NERL incorporates the power term and switching gain term of the system state variables into the conventional exponential reaching law, and the convergent speed of the TSMC is accelerated. Then, an HOTSMO is designed, which considers the speed and lumped disturbances of the system as the observation object. The estimated disturbance is then provided as a compensation for the controller, which enhances the disturbance rejection ability of the system. Comparative simulation and experimental results show that the proposed method achieves the best tracking performance and the strongest robustness than PID and the traditional TSMC methods.
Funder
National Natural Science Foundation of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献