Spatio-Temporal Dynamic of the Land Use/Cover Change and Scenario Simulation in the Southeast Coastal Shelterbelt System Construction Project Region of China

Author:

Bao Shengwang,Yang Fan

Abstract

The National Coastal Shelterbelt System Construction Project (NCSSCP) was proposed to increase the afforestation area and neutralize the impact of urbanization, especially in the southeast coastal sub-region of China. In this study, we identified the spatio-temporal evolution characteristics and predicted the land use and land cover changes (LUCC) associated with this project by modeling scenarios, seeking to explore the path of sustainable development. The spatial structure was analyzed using the landscape pattern index approach and the land use transfer matrix. By coupling the Markov model and patch-generating a land-use simulation model (PLUS), different scenarios were analyzed to predict the quantity and spatial changes. According to the results, based on the current trends and due to the impact of urbanization, the forest area was predicted to decrease by 633.19 km2, whilst appearing more spatially fragmented and separated. However, with the completion of the NCSSCP target, the forest area was predicted to increase by 1666.12 km2, and the spatial structure would appear more cohesive and concentrated. From an overall perspective, the afforestation target of NCSSCP will not be completed under the present trend. It is difficult for the afforestation speed of the NCSSCP to keep up with the speed of urbanization. Therefore, giving consideration to both the afforestation speed and quality and reducing the speed of urbanization to balance the economy and ecology would be beneficial in terms of the realization of the aims of sustainable development.

Funder

the National Natural Science Foundation of China

the Science and Technology Plan Program of Zhoushan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3