Abstract
Industry 4.0 involves the use of information and communication technologies to transform industry by intelligent networking machines and processes. The availability of big data sets from manufacturing and inspection allow for developing new and more accurate simulation models. This involves the development of new machining simulation models to consider the geometrical deviations of the workpiece due to the machine tool, the part datum surfaces and the fixturing equipment. This work presents a model that kinematically correlates the locator uncertainty, the form deviation on the part datum surface in contact with the locators and the volumetric uncertainty of the machine tool, with the geometric deviations of a surface due to a drilling or milling process. An analytical model was developed in a Matlab® file to simulate the surface geometrical deviations from nominal during drilling or milling. It is new as regards the state of the art because it takes into account two sources of uncertainty. This numerical approach allows for avoiding experimental tests, with a resultant saving of time, energy and material. It was applied to drilling, face milling and contouring processes. It was proved that machine tool volumetric uncertainty influences the form deviation of the machined surface, while the locator configuration and the datum form deviation affect the orientation of the machined surface, as should be in reality. The proposed model allows us to take into account geometrical deviations of the part datum surfaces of 0.001 mm, location deviations in the locators of ± 0.03 mm and machine tool positional and rotational uncertainties of 0.01 mm and σd=0.01∗π180 mm, respectively.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference40 articles.
1. Predicting surface roughness in machining: a review
2. Prediction of the 3D Surface Topography after Ball End Milling and its Influence on Aerodynamics
3. Geometrical Product Specification (GPS)-Surface Texture: Profile Method-Terms, Definitions and Surface Texture Parameters,2009
4. Surface Integrity—Definition and Importance in Functional Performance;Astakhov,2010
5. Technological Heredity of the Turning Process;Zmarzły;Techn. Gaz.,2020
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献