Effects of Nitrogen Application in the Wheat Booting Stage on Glutenin Polymerization and Structural–Thermal Properties of Gluten with Variations in HMW-GS at the Glu-D1 Locus

Author:

Song Lijun,Li Liqun,Zhao Liye,Liu Zhenzhen,Li XuejunORCID

Abstract

Wheat gluten properties can be improved by the application of nitrogen. This study investigates the effects of nitrogen application in the booting stage on glutenin polymerization during grain-filling and structural–thermal properties of gluten based on the high-molecular-weight glutenin subunits (HMW-GSs) using near-isogenic lines (Glu-1Da and Glu-1Dd). The nitrogen rate experiment included rates of 0, 60, 90, and 120 kg N ha−1 applied with three replicates. Nitrogen significantly improved the grain quality traits (wet gluten contents, Zeleny sedimentation values, and maximum resistance) and dough strength (dough development time, dough stability time, and protein weakening), especially in wheat with the Glu-1Da allele. Nitrogen increased the protein composition contents, proportions of glutenins and HMW-GSs, and disulfide bond concentration in the flours of Glu-1Da and Glu-1Dd, and accelerated the polymerization of glutenins (appearing as glutenin macropolymer) during grain-filling, where nitrogen enhanced the accumulation and polymerization of glutenins more for line containing Glu-1Da than Glu-1Dd. The β-sheets, α-helix/β-sheet ratio, microstructures, and thermal stability were also improved to a greater degree by nitrogen for gluten with Glu-1Da compared to Glu-1Dd. Nitrogen treatment was highly effective at improving the gluten structural‒thermal properties of wheat in the booting stage, especially with inferior glutenin subunits.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3