SFRS-Net: A Cloud-Detection Method Based on Deep Convolutional Neural Networks for GF-1 Remote-Sensing Images

Author:

Li Xiaolong,Zheng Hong,Han Chuanzhao,Zheng Wentao,Chen HaoORCID,Jing Ying,Dong Kaihan

Abstract

Clouds constitute a major obstacle to the application of optical remote-sensing images as they destroy the continuity of the ground information in the images and reduce their utilization rate. Therefore, cloud detection has become an important preprocessing step for optical remote-sensing image applications. Due to the fact that the features of clouds in current cloud-detection methods are mostly manually interpreted and the information in remote-sensing images is complex, the accuracy and generalization of current cloud-detection methods are unsatisfactory. As cloud detection aims to extract cloud regions from the background, it can be regarded as a semantic segmentation problem. A cloud-detection method based on deep convolutional neural networks (DCNN)—that is, a spatial folding–unfolding remote-sensing network (SFRS-Net)—is introduced in the paper, and the reason for the inaccuracy of DCNN during cloud region segmentation and the concept of space folding/unfolding is presented. The backbone network of the proposed method adopts an encoder–decoder structure, in which the pooling operation in the encoder is replaced by a folding operation, and the upsampling operation in the decoder is replaced by an unfolding operation. As a result, the accuracy of cloud detection is improved, while the generalization is guaranteed. In the experiment, the multispectral data of the GaoFen-1 (GF-1) satellite is collected to form a dataset, and the overall accuracy (OA) of this method reaches 96.98%, which is a satisfactory result. This study aims to develop a method that is suitable for cloud detection and can complement other cloud-detection methods, providing a reference for researchers interested in cloud detection of remote-sensing images.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3