ShuffleCloudNet: A Lightweight Composite Neural Network-Based Method for Cloud Computation in Remote-Sensing Images

Author:

Wang GangORCID,Lu Zhiying,Wang Ping

Abstract

The occlusion of cloud layers affects the accurate acquisition of ground object information and causes a large amount of useless remote-sensing data transmission and processing, wasting storage, as well as computing resources. Therefore, in this paper, we designed a lightweight composite neural network model to calculate the cloud amount in high-resolution visible remote-sensing images by training the model using thumbnail images and browsing images in remote-sensing images. The training samples were established using paired thumbnail images and browsing images, and the cloud-amount calculation model was obtained by training a proposed composite neural network. The strategy used the thumbnail images for preliminary judgment and the browsing images for accurate calculation, and this combination can quickly determine the cloud amount. The multi-scale confidence fusion module and bag-of-words loss function were redesigned to achieve fast and accurate calculation of cloud-amount data from remote-sensing images. This effectively alleviates the problem of low cloud-amount calculation, thin clouds not being counted as clouds, and that of ice and clouds being confused as in existing methods. Furthermore, a complete dataset of cloud-amount calculation for remote-sensing images, CTI_RSCloud, was constructed for training and testing. The experimental results show that, with less than 13 MB of parameters, the proposed lightweight network model greatly improves the timeliness of cloud-amount calculation, with a runtime is in the millisecond range. In addition, the calculation accuracy is better than the classic lightweight networks and backbone networks of the best cloud-detection models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3