Undifferenced Kinematic Precise Orbit Determination of Swarm and GRACE-FO Satellites from GNSS Observations

Author:

Luo Peng,Jin ShuanggenORCID,Shi Qiqi

Abstract

Low Earth Orbit (LEO) satellites can be used for remote sensing and gravity field recovery, while precise orbit determination (POD) is vital for LEO satellite applications. However, there are some systematic errors when using the LEO satellite orbits released by different agencies in multi-satellite-based applications, e.g., Swarm and Gravity Recovery and Climate Experiment-Follow-On (GRACE-FO), as different GNSS precise orbit and clock products are used as well as processing strategies and software. In this paper, we performed undifferenced kinematic PODs for Swarm and GRACE-FO satellites simultaneously over a total of 14 days by using consistent International Global Navigation Satellite System (GNSS) Service (IGS) precise orbit and clock products. The processing strategy based on an undifferenced ionosphere-free combination and a least squares method was applied for Swarm and GRACE-FO satellites. Furthermore, the quality control for the kinematic orbits was adopted to mitigate abrupt position offsets. Moreover, the accuracy of the kinematic orbits solution was evaluated by carrier phase residual analysis and Satellite Laser Ranging (SLR) observations, as well as comparison with official orbits. The results show that the kinematic orbits solution is better than 4 cm, according to the SLR validation. With quality control, the accuracy of the kinematic orbit solution is improved by 2.49 % for the Swarm-C satellite and 6.98 % for the GRACE-D satellite when compared with their precise orbits. By analyzing the accuracy of the undifferenced kinematic orbit solution, the reliability of the LEO orbit determination is presented in terms of processing strategies and quality control procedures.

Funder

the Shanghai Leading Talent Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3