Occupancy Reward-Driven Exploration with Deep Reinforcement Learning for Mobile Robot System

Author:

Kamalova AlbinaORCID,Lee Suk Gyu,Kwon Soon Hak

Abstract

This paper investigates the solution to a mobile-robot exploration problem following autonomous driving principles. The exploration task is formulated in this study as a process of building a map while a robot moves in an indoor environment beginning from full uncertainties. The sequence of robot decisions of how to move defines the strategy of the exploration that this paper aims to investigate, applying one of the Deep Reinforcement Learning methods, known as the Deep Deterministic Policy Gradient (DDPG) algorithm. A custom environment is created representing the mapping process with a map visualization, a robot model, and a reward function. The actor-critic network receives and sends input and output data, respectively, to the custom environment. The input is the data from the laser sensor, which is equipped on the robot. The output is the continuous actions of the robot in terms of linear and angular velocities. The training results of this study show the strengths and weaknesses of the DDPG algorithm for the robotic mapping problem. The implementation was developed in MATLAB platform using its corresponding toolboxes. A comparison with another exploration algorithm is also provided.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3