Collaborative Complete Coverage and Path Planning for Multi-Robot Exploration

Author:

Lin Huei-YungORCID,Huang Yi-Chun

Abstract

In mobile robotics research, the exploration of unknown environments has always been an important topic due to its practical uses in consumer and military applications. One specific interest of recent investigation is the field of complete coverage and path planning (CCPP) techniques for mobile robot navigation. In this paper, we present a collaborative CCPP algorithms for single robot and multi-robot systems. The incremental coverage from the robot movement is maximized by evaluating a new cost function. A goal selection function is then designed to facilitate the collaborative exploration for a multi-robot system. By considering the local gains from the individual robots as well as the global gain by the goal selection, the proposed method is able to optimize the overall coverage efficiency. In the experiments, our CCPP algorithms are carried out on various unknown and complex environment maps. The simulation results and performance evaluation demonstrate the effectiveness of the proposed collaborative CCPP technique.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3