Performance of Textile Mask Materials in Varied Humidity: Filtration Efficiency, Breathability, and Quality Factor

Author:

Segovia Joelle M.,Huang Ching-HsuanORCID,Mamishev Maxwell,Yuan Nanhsun,He JiayangORCID,Novosselov IgorORCID

Abstract

During the COVID-19 pandemic, reusable masks became ubiquitous; these masks were made from various fabrics without guidance from the research community or regulating agencies. Though reusable masks reduce the waste stream associated with disposable masks and promote the use of masks by the population, their efficacy in preventing the transmission of infectious agents has not been evaluated sufficiently. Among the unknowns is the effect of relative humidity (RH) on fabrics’ filtration efficiency (FE) and breathability. This study evaluates the FE and breathability of several readily accessible mask materials in an aerosol chamber. Sodium chloride aerosols were used as the challenge aerosol with aerodynamic particle diameter in the 0.5 to 2.5 µm range. To mimic the variability in RH in the environment and the exhaled-breath condition, the chamber was operated at RH of 30% to 70%. The face velocity was varied between 0.05 m/s and 0.19 m/s to simulate different breathing rates. The FE and pressure drop were used to determine the quality factor of the materials. Among the tested materials, the 3M P100 filter has the highest pressure drop of 140 Pa; the N95 mask and the 3M P100 have almost 100% FE for all sizes of particles and tested face velocities; the surgical mask has nearly 90% FE for all the particles and the lowest pressure drop among the certified materials, which ranks it the second to the N95 mask in the quality factor. Other material performance data are presented as a function of relative humidity and aerosol size. The quality factor for each material was compared against reference filtration media and surgical masks. Multiple layers of selected materials are also tested. While the additional layers improve FE, the pressure drop increases linearly. Additionally, the certified materials performed approximately three times better than the highest performing non-certified material.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3