One-Step Fast Fabrication of Electrospun Fiber Membranes for Efficient Particulate Matter Removal

Author:

Liu Huanliang12,Lai Wenqing12,Shi Yue12,Tian Lei12,Li Kang12,Bian Liping12,Xi Zhuge12,Lin Bencheng12

Affiliation:

1. Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China

2. Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China

Abstract

Rapid social and industrial development has resulted in an increasing demand for fossil fuel energy, which increases particulate matter (PM) pollution. In this study, we employed a simple one-step electrospinning technique to fabricate polysulfone (PSF) fiber membranes for PM filtration. A 0.3 g/mL polymer solution with an N,N-dimethylformamide:tetrahydrofuran volume ratio of 3:1 yielded uniform and bead-free PSF fibers with a diameter of approximately 1.17 μm. The PSF fiber membrane exhibited excellent hydrophobicity and mechanical properties, including a tensile strength of 1.14 MPa and an elongation at break of 116.6%. Finally, the PM filtration performance of the PSF fiber membrane was evaluated. The filtration efficiencies of the membrane for PM2.5 and PM1.0 were approximately 99.6% and 99.2%, respectively. The pressure drops were 65.0 and 65.2 Pa, which were significantly lower than those of commercial air filters. Using this technique, PSF fiber membrane filters can be easily fabricated over a large area, which is promising for numerous air filtration systems.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3