Abstract
The use of building information modelling (BIM) in construction projects is expanding, and its usability throughout building lifecycles, from planning and construction to operation and maintenance, is gaining increasing proof. In the design of domestic drinking-water and sewerage systems (DDWSSs), BIM focuses on coordinating disciplines and their design. Despite studies promoting BIM environments for DDWSSs that take into account the regulatory frameworks of corresponding countries, these efforts do not include the use of parametric tools that enhance the efficiency of the design process. Therefore, engineers still use conventional 2D design, which requires many rounds of iteration, and manual work is also generally still used. In this research, we developed and validated an intuitive methodology for solving a specific DDWSS problem, using a design science research method (DSRM) as an applied science approach. This was addressed by developing an artefact and validating it through two case studies. The obtained solution combines BIM models and parametric tools to automate the manual activities of the traditional design method. This article aims to bring abstract BIM concepts into practice and encourage researchers and engineers to adopt BIM for DDWSSs.
Funder
Grants for the Promotion of Research in the Department of Civil and Building Engineering, UCLM
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献