Hybrid Model Based on an SD Selection, CEEMDAN, and Deep Learning for Short-Term Load Forecasting of an Electric Vehicle Fleet

Author:

Mohsenimanesh Ahmad,Entchev Evgueniy,Bosnjak Filip

Abstract

Forecasting the aggregate charging load of a fleet of electric vehicles (EVs) plays an important role in the energy management of the future power system. Therefore, accurate charging load forecasting is necessary for reliable and efficient power system operation. A hybrid method that is a combination of the similar day (SD) selection, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and deep neural networks is proposed and explored in this paper. For the SD selection, an extreme gradient boosting (XGB)-based weighted k-means method is chosen and applied to evaluate the similarity between the prediction and historical days. The CEEMDAN algorithm, which is an advanced method of empirical mode decomposition (EMD), is used to decompose original data, to acquire intrinsic mode functions (IMFs) and residuals, and to improve the noise reduction effect. Three popular deep neural networks that have been utilized for load predictions are gated recurrent units (GRUs), long short-term memory (LSTM), and bidirectional long short-term memory (BiLSTM). The developed models were assessed on a real-life charging load dataset that was collected from 1000 EVs in nine provinces in Canada from 2017 to 2019. The obtained numerical results of six predictive combination models show that the proposed hybrid SD-CEEMDAN-BiLSTM model outperformed the single and other hybrid models with the smallest forecasting mean absolute percentage error (MAPE) of 2.63% Canada-wide.

Funder

Natural Resources Canada, Office of Energy Research and Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Short-Term Load Forecasting Reliability in Power Plant of Cyber-Physical Energy System Considering Adaptive Denoising;IEEE Systems Journal;2023-12

2. Short-term Load Forecasting Based on CEEMDAN-PE-GWO-LSTM;2023 3rd International Conference on Energy Engineering and Power Systems (EEPS);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3