Abstract
Short-term load forecasting is a key task to maintain the stable and effective operation of power systems, providing reasonable future load curve feeding to the unit commitment and economic load dispatch. In recent years, the boost of internal combustion engine (ICE) based vehicles leads to the fossil fuel shortage and environmental pollution, bringing significant contributions to the greenhouse gas emissions. One of the effective ways to solve problems is to use electric vehicles (EVs) to replace the ICE based vehicles. However, the mass rollout of EVs may cause severe problems to the power system due to the huge charging power and stochastic charging behaviors of the EVs drivers. The accurate model of EV charging load forecasting is, therefore, an emerging topic. In this paper, four featured deep learning approaches are employed and compared in forecasting the EVs charging load from the charging station perspective. Numerical results show that the gated recurrent units (GRU) model obtains the best performance on the hourly based historical data charging scenarios, and it, therefore, provides a useful tool of higher accuracy in terms of the hourly based short-term EVs load forecasting.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
China Postdoctoral Science Foundation
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献