Spatio-Temporal Characteristics and Trend Prediction of Extreme Precipitation—Taking the Dongjiang River Basin as an Example

Author:

Li Ningning1234,Chen Xiaohong1ORCID,Qiu Jing234,Li Wenhui5,Zhao Bikui234

Affiliation:

1. Water Resources and Environment Research Center, School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China

2. Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510635, China

3. National and Local Joint Engineering Laboratory of Estuary Hydropower Technology, Guangzhou 510635, China

4. Guangdong Water Security Collaborating Innovation Center, Guangzhou 510635, China

5. The Key Laboratory of Virtual Geographic Environment (MOE), Nanjing Normal University, Nanjing 210023, China

Abstract

The intricate interplay between human activities and climate change has resulted in a rise in the occurrence of extreme precipitation worldwide, which has attracted extensive attention. However, there has been limited dissemination of accurate prediction of extreme precipitation based on analysis of spatio-temporal characteristics of such events. In this study, the intra-annual distribution of extreme precipitation was subjected to scrutiny via an analysis of precipitation concentration degree (PCD) and precipitation concentration period (PCP), while also investigating the spatio-temporal trends of the annual precipitation, maximum daily precipitation, maximum 5-day precipitation, and extreme precipitation (defined as daily precipitation exceeding the 99th percentile of the total precipitation). Furthermore, subsequently, conducting simulation, verification, and prediction of extreme precipitation was achieved through the application of a back-propagation artificial neural network (BP-ANN). This study employed the data of the daily precipitation in the Dongjiang River Basin from 1979 to 2022, a time period which was of sufficient length to reflect the latest changes in precipitation patterns. The results demonstrated spatio-temporal differences between precipitation levels in the upper and lower reaches of the Dongjiang River Basin, that is, the PCD of the lower reach was higher and the PCP of the lower reach came half a month later compared with the upper reach. Moreover, the extreme precipitation indices increased from northeast to southwest, with the characteristics of lower-reach precipitation being more extreme and periodic. It was predicted that the total precipitation in 2023 would decrease, while the extreme precipitation would increase. The qualification rate of forecasting extreme precipitation ranged from 27% to 72%.

Funder

National Natural Science Foundation of China

Guangdong–Hong Kong Joint Laboratory for Water Security

Water Resource Science and Technology Innovation Program of Guangdong Province

Fundamental and Applied Basic Research Fund of Guangdong Province

Special Fund for the Stable Support for Provincial Scientific Research Institutions

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3