Artificial neural networks for monthly precipitation prediction in north-west Algeria: a case study in the Oranie-Chott-Chergui basin

Author:

Bouach Ahcene1ORCID

Affiliation:

1. 1 Preservation and Protection of Water Resources Laboratory, Faculty of Technology, Department of Water Sciences and Environment, University of Blida 1, Blida, Algeria

Abstract

Abstract The north-west region of Algeria, pivotal for the nation's water resources and agriculture, faces challenges from changing precipitation patterns due to climate change. In response, our study introduces a robust forecasting tool utilizing artificial neural networks (ANNs) to predict monthly precipitation over a 12-month horizon. We meticulously evaluated two normalization methods, ANN-SS and ANN-MM, and assessed four distinct approaches for selecting input variables (no selection, ANN-WO, ANN-CO, and ANN-VE) to optimize model performance. Our research contributes significantly to the field by addressing a critical gap in understanding the impact of evolving precipitation patterns on water resources. Among the innovations, this study uniquely focuses on medium-term precipitation forecasting, an aspect often marginalized in previous research. Noteworthy outcomes include correlation coefficients of 0.48 and 0.49 during the validation phase, particularly with the Endogen variables and correlation-optimized models using Min-Max normalization. Additionally, the Min-Max normalized technique achieves an impressive 67.71% accuracy in predicting the hydrological situation based on the Standard Precipitation Index.

Publisher

IWA Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3