Mapping and Monitoring of the Invasive Species Dichrostachys cinerea (Marabú) in Central Cuba Using Landsat Imagery and Machine Learning (1994–2022)

Author:

Valero-Jorge Alexey12ORCID,González-De Zayas Roberto34,Matos-Pupo Felipe2,Becerra-González Angel Luis5,Álvarez-Taboada Flor6ORCID

Affiliation:

1. Department of Agrarian, Forest and Environmental Systems, Agri-Food Research and Technology Centre of Aragon (CITA), 50059 Zaragoza, Spain

2. Provincial Meteorological Centre of Ciego de Ávila, Institute of Meteorology, Avenida de los Deportes S/N, Ciego de Ávila 65100, Cuba

3. Department of Hydraulic Engineering, Faculty of Technical Sciences, Universidad de Ciego de Ávila, Ciego de Ávila 65100, Cuba

4. Centre for Geomatic, Environmental and Marine Estudies (GEOMAR), Ciudad de México 11560, Mexico

5. Moron Geodesy and Cadaster Facility, Morón 67210, Cuba

6. School of Agrarian and Forest Engineering, Universidad de León, 24404 León, Spain

Abstract

Invasive plants are a serious problem in island ecosystems and are the main cause of the extinction of endemic species. Cuba is located within one of the hotspots of global biodiversity, which, coupled with high endemism and the impacts caused by various disturbances, makes it a region particularly sensitive to potential damage by invasive plants like Dichrostachys cinerea (L.) Wight & Arn. (marabú). However, there is a lack of timely information for monitoring this species, as well as about the land use and land cover (LULC) classes most significantly impacted by this invasion in the last few decades and their spatial distribution. The main objective of this study, carried out in Central Cuba, was to detect and monitor the spread of marabú over a 28-year period. The land covers for the years 1994 and 2022 were classified using Landsat 5 TM and 8 OLI images with three different classification algorithms: maximum likelihood (ML), support vector machine (SVM), and random forest (RF). The results obtained showed that RF outperformed the other classifiers, achieving AUC values of 0.92 for 1994 and 0.97 for 2022. It was confirmed that the area covered by marabú increased by 29,555 ha, from 61,977.59 ha in 1994 to 91,533.47 ha in 2022 (by around 48%), affecting key land covers like woodlands, mangroves, and rainfed croplands. These changes in the area covered by marabú were associated, principally, with changes in land uses and tenure and not with other factors, such as rainfall or relief in the province. The use of other free multispectral imagery, such as Sentinel 2 data, with higher temporal and spatial resolution, could further refine the model’s accuracy.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3